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THRESHOLD DEPENDENT ROBUST DISCRIMINATION
FOR CONVEX PROBABILITY UNCERTAINTY CLASSES

I. INTRODUCTION

Robust binary signal discrimination is concerned with finding detection structures whose performance
measures over an input class (or classes) are nontrivally lower and/or upper bounded. Normally the
underlying probability measures for the binary hypotheses are defined in terms of uncertainty or
neighborhood classes. The detector performance measures can be false alarm probability, detection
probability, risk, output signal-to-noise (S/N) power ratio, or deflection.

It was proven by Strassen [1, 2] for finite spaces and then by Huber and Strassen [3] for Polish
spaces that the Neyman-Pearson lemma generalizes for uncertainty classes that can be characterized as

Choquet’s 2-alternating capacities [4, 5]. Let  be a Polish space and let # stand for the o-Borel field
on Q. By M we denote the set of all probability measures on #. The 2-alternating capacity used by

Huber and Strassen [3] can be defined as a set function 5 from % to [0, 1] which is the upper probability
of a weakly compact set of probability measures, and it satisfies the condition n(4 U B) + 7(4 N B) <

7(4) + 9(B) for all A, B € F. A set P of all probability measures majorized by 9, i.e. P = {P € M
: P(A) < n(A4), for all A € &}, is said to be generated by 7.

The Huber-Strassen results were further extended in terms of special capacities by Rieder [6] and
Bednarski [7], and general capacities by Vastola [8]. Results for specific uncertainty classes are given
by Huber [9, 15], Kassam [10], and Vastola and Poor [11]. All of the above results pertain to the signal
discrimination problem whereby each hypothesis is characterized by non-overlapping uncertainty classes.
Other approaches consider the generalized signal-to-noise ratio (cf. [12, 13]) as a performance measure.

For all of the results previously cited, the robust test between the two composite hypotheses reduces
to a test between two simple hypotheses whereby the underlying probability measures are fixed
representatives of the specified uncertainty classes. The representative measures are independent of the
test’s threshold. In many cases the resultant test is a censored version of a nominal likelihood ratio.
Hence, arbitrarily low false alarm probabilities cannot be attained without a trivial randomization of the
decision rule. In this paper, we develop a new class of robust discriminators whereby the solutions are
threshold dependent (or for short, T-dependent). Specifically we are looking for decision rules such that
if the threshold of the rule is specified, then the Bayes risk of the detector is sharply upper-bounded over
given input uncertainty classes. By sharp, we mean that there is at least one pair in the hypotheses’
uncertainty classes for which the upper-bound is attained. It is in this sense that we define robustness.
For this development, the support of the random variables is assumed to have a finite number of
elements. :

The basic motivation for finding the robust 7-dependent solutions is to provide a mechanism for
generating robust solutions for uncertainty classes that are not necessarily 2-alternating capacitable. If
certain conditions are satisfied, we will find that the uncertainty classes need not be 2-alternating
capacitable in order for robust solutions to exist. It will be shown that the robust discrimination solution
is again given by a fixed representative pair of simple hypotheses.

This paper is organized as follows. In Section II, we formulate the discrimination problem and
summarize an earlier formulation due to Huber [8] and Poor [12]. In Section III, the 7-dependent robust
solutions for signal discrimination are formulated as solutions of a particular minimization problem similar
to that developed by Huber and Strassen [3]. Formulations and conditions for solutions for specific
uncertainty classes (the divergence class and its generalization, the divergence/linear class) are given in
Sections IV and V.

Manuscript approved August 5, 1998.



II. PRELIMINARIES

Let (X, &) be a measurable space, and let Py, P, be distinct probability measures on it. Assume that
P, and P, are members of two disjoint classes, P, and P,, respectively, of possible distributions on (X,
&), and that P, and P, are convex probability classes, i.e. if f’,., P‘. € P then (1 — v)15‘, + vf’, € P
forO0 <v<1,i=0,1. Let P{i =0,1) have density p; with respect to some measure x and assume
that p > > P, P, and P, >> P forall P, € P, (i = 0,1). For this space, X is the set of possible

observations and the support of X has a finite number of elements and is denoted by Q,. & is the
g-algebra of possible observation events. In addition, let x = {x,, n = 1, 2, ..., N} be a sequence of
complex (X C C") identically distributed (but not necessarily independent) random variables (r.v.’s)

defined on (X, %).

On the basis of observing the vector X = (X,, X,, ..., X,)" where T denotes transpose and X, is the
realization of r.v., x,. We wish to decide between the following pair of hypotheses concerning X,

H: X ~ P, € P, o
H:X ~ P, € P,

where X ~ P indicates that the observation vector X is distributed according to the distribution P.

Let ¢ be any test between P, and P, accepting P, with conditional probability ¢(X) given that X has
been observed. Assume that a cost C, is incurred only if H, is falsely rejected (i = 0, 1). The expected
costs, or risks are given by

R(P,$) = C, E{¢ | H, true}, 2.2)
= C, Prob {¢ accepts H, | H, true},
R(P,$) = C, E{1 - ¢ | H, true}, (2.3)

= C, Prob {¢ accepts H, | H, true},

where E and Prob denote expectation and probability, respectively. Consider the following minimax
testing problems:

min max I_?(PI, @) subject to max I—Q(PO, P) < « 2.4
€D P EP P,EP,
and
min max [%R(P, ¢) + TR(P, $)] 2.5)
$ED P.PEP



where 7, = Prob {H} occurs, P = P, X P;, and D denotes the class of all randomized decision rules.
The problems described by (2.4) and (2.5) are the minimax Neyman-Pearson and Bayes hypothesis testing
criteria, respectively.

When the measures P; and their respective densities, p;, are known, then the optimal decision rule
for both of the above problems is given by the likelihood ratio test [14]:

1, pX)pX) >T

dX) =17 p~XpX) =T (2.6)
0, pX)pX) <T

where the randomization parameter v and threshold T are chosen to achieve the desired risk performance.
For the Bayes criteria, ¥ = 0.

When P,, P, are not known but are members of the disjoint uncertainty classes Fo, Py, respectively,
then Huber and Strassen [3] have shown that if the composite hypotheses can be described in terms of
alternating capacities of order 2, then the minimax problems given by (2.4) and (2.5) are solved by an
ordinary test between a fixed representative pair P, P, of simple hypotheses where P, € P, (i = 0, 1).
Note for their development the condition, P, > > P,, was not used, the support space need not have a

finite number of elements, and that 130 , 13l are independent of the threshold, 7. In certain cases they also
showed that the alternating capacity condition is necessary.

In our development, we wish to define a new class of robust detectors which depend upon the
threshold, T. If certain conditions are satisfied, we will find that the alternating capacity condition is not

necessary in order for robust solutions to exist and that again the robust solutions are given by a fixed
representative pair of simple hypotheses. Our performance measure for optimality is Bayes risk.

To this end, we restrict ¢ to take the following form for Bayes tests for some (13‘0 , 131) € P, X P

1 pX)p(X) > T

. 2.7
$X) - o @7
0 pXPpX) =T.
For a given threshold T we define the T-dependent risks:
R(P,, ¢, 1) = C, Prob {¢ accepts H, | H, true, T} 2.8)
R(P,, ¢ .1 = C, Prob {¢ accepts H, | H, true, T}. 2.9

Measures that can be directly associated with the risks are the probabilities of detection (the power of the
test) and false alarm (the size of the test) which we denote by Pp, and Py, respectively. These are defined
as

P,P,, ¢, T) = Prob {¢ accepts H, | H, true, T}, (2.10)




PAP,, &, T) = Prob {¢ accepts H, | H, true, T}. @.11)
In addition the probability of a missed detection is defined by
PP, &, T) = 1 - PP, T). 2.12)

Let ¢ be the likelihood ratio associated with a given pair (P,, P,) € P. For arbitrary input pair (P, P) € P,
the Bayes risk is defined as

RSP, P, $, T)=x,C, PAP, ¢, T) + w, C, P,(P,, }, T) 2.13)
where
r- 5% 2.14)
xC

For a given T, we desire to find a ¢ associated with the pair (P,, P,) € P such that the following
bounding condition is satisfied:

R(P,, P, b, T) = R(P,, P, &, D 2.15)

forall P, P, € P.

Definition: For a given T, a pair (P,, P,) is called least favorable in terms of risk and 7-dependence with

respect to the hypothesis test (2.1), if (2.15) is satisfied where @ is associated with 2,, P, and T
according to Eq. (2.7). The pair is also called the least favorable T-dependent pair.

From Bayes risk theory, the least favorable 7-dependent pair also satisfies the following inequality:
R(P,, P, ¢, )= R(P, P,o, T (2.16)

where ¢ is arbitrary [12]. The inequalities given by (2.15) and (2.16) indicate that (150, f’,) is a saddle
point solution of (2.5).

III. ROBUST SOLUTIONS VIA A MINIMIZATION PROBLEM
A. Minimization Problem Definition

Huber and Strassen [3] showed that the least favorable pair associated with the discrimination
problem for composite hypotheses that can be described as 2-alternating capacities can be characterized
as the solution of an integral minimization problem. This characterization (or a modification of the form
given in [10]) also has been found for pdf banded classes and for other optimization criteria where a
minimax solution is desired (cf. [12]). In this section, we show for spaces with a finite number of



elements that the least favorable T-dependent pair can also be characterized as the solution of a
minimization problem.

For not necessarily finite support spaces, consider the functional defined by

dP,

0

P, 3.1)

J(P,, P) = [x F

where P,, P, have been previously defined, dP,/dP, is the Radon-Nikodym derivative of P, with respect

to P,, and F is a convex function such that its domain and range are in R* {J {0}. Set P = P, X P,.
Consider the problem of finding

min J(P,, P,). (3.2)
P

Under the assumption that the probability densities of P(i = 0, 1) exist and are denoted by p;, then
equation (3.1) can be rewritten as

Py

0

(3.3)

Hpo ) = [ F |5 Podn

where ](Po, P) = J@p,, p)). Let P,(i =1, 2) donote the sets of probability densities associated with
P,. We see that the minimization problem of (3.2) is equivalent to the problem:

min J(p,, p) (3.4)
14

where p = p, X p,. We note that p is a bounded subset of space L'[{u] X L'[u] and by using Jensen’s
inequality, J is bounded from below by F(1). Hence we have a problem of minimizing a convex
functional that is bounded from below over a bounded subset of a Banach space. Results related to the
existence of this minimum can be found in [16-18] and in particular if p is compact via the Weierstrass
theorem. Using a result in Poor [12], we can prove the following existence result if p is compact, but J
is not necessarily convex. '

Theorem 1: Suppose the class P, |J P, is dominated by a o-finite measure p on (X, %) and that

Py + P)
dp

0 (3.5)

almost everywhere (a.e.) {y] for all (P, P)) € P. If p is a compact subset of I’[u] X LP[u] for some p
> 1 (mote ||y, p)Il = [lpol] + Ilp,11), then the functional J(p,, p,) achieves a minimum on p.

Proof: The proof is a slight modification of the proof given by Poor for his Theorem 2 {12]. For his
Theorem 2, F(p\/p)) = (p/po). If we substitute F(p,/p,) for (p\/po)* in his proof, all the conclusions
remain the same and Theorem 1 follows.[]



We further restrict F to be monotonically increasing, twice differentiable, greater than or equal to
zero, and F'' = 0 (F'' denotes the second derivative of F). Further restrictions will be placed on F as
our development proceeds.

We set

P, = (1 = V)b, + vp,, (3.6)

P, = (1 - v)p, +vp, 3.7

where 0 < v < 1; py, p, € p, P,» P, € p,, and note that due to convexity (py,, p;,) € p. Because
the support space of X has a finite number of elements, henceforth we represent all integrations over Q,
or subsets of {2, as summations. Define the following scalar functions of v on [0, 1]

H©) =Y F ﬂ] Pon (3.8)
g, ov
- plv A (39)
Hw) =Y F 22| B,
g, 0
_ Py (3.10)
Hv) =Y F |2 p,y,-
a, ov

Lemma 1: H,, H,, H, are convex functions of v on [0, 1].

Proof: 1t is straightforward to show that

dH 5 5 z
ooy -y |F| 2| -2p B @-11)
dv ) Po Po Poy
d’H, _ > P@ -0 [ [P S, (3.12)
dVZ Q, p(;v kpo‘,)
dH, . Py (3.13)
sk -p) Fo|2]. :
& "X P h 7




dzHl — E (pl _p"l)2 Frr [_ﬁ_h’_] > 0 (314)

dv2 Q, po

dHZ A p]v plv p] (3‘15)
— = = - Fl=2l -2F |22

dv z (pO po) |: [ ] p0v

va va

and

2 4 —nA)
de _ E (plpo plpo) F' Py > 0. (3.16)
dv? Q ng Po,

where F' is the first derivative of F. The results of (3.12), (3.14), and (3.16) verify the lemma. ]
Because H, is a convex function of v it follows that J is convex on p.
B. Minimization Solution Convergence

A useful functional form for F is now defined which allows us to obtain our results. Define the
function G on R* |J {0} as

G{2) = ZF'() - FQ). (3.17)
It can be shown that
F@) = 2 L,Z G(f) dg (3.18)
and
G'@2) = F"'(2). (3.19)

Set G = G(z, T) and define the function




[0 forz € Q =(0, 1)
G@iT) = l -1 for z € Q =TT +e¢ (3.20)
¢ €
| 1 forz € Q, = [T + ¢, ]

where the sets Q), Q,, and Q, are defined in the equation. For this characterization, G(z,T) = u(z - T)

as € ¢ O where u is the Heavyside step function. For this G, (z,T), we can write F(z,T) using (3.18)
explicitly as

r

0 , 2 €
1 b4
—Jzln = - (z -
F@D = | € [ 7 7)] , ZE€Q (3.21)
b4 €
=1 1 =1 -1
‘6“[*T] , Z € Q,

Using (3.21), it is straightforward to show that F, is twice differentiable with respect to z, greater than
or equal to zero, and monotonically increasing. However F,'’ is not continuous. Define

0 v 2 <T (3.22)
F()(Zvn = 1
_T.(z D =1

We will need the following two lemmas for our development:

Lemma 2: F(z, T) converges uniformly on {0, z,,,] to F(z, ) as € 0 where 0 < z < oo,

max

Proof: See Appendix A.

Lemma 3: Set H(z,T) = F'(z,T) - lT G(z,7). For the characterization of G(z,T) given by (3.20),

H(z, T) converges uniformly to 0 for z > 0 as € ¢ 0.

Proof: See Appendix B. ~

Define the functional J (p,, p,) as

Iy, P) = Y. Py Fp,Ipy.T) (3.23)

nl

and set (if they exist)



®@,» Py = arg min J(p,, p,) (3.24)

PP EP

(ﬁé’ ﬁl) = arg min J(<p0,P1)- (325)

Pob Ep

We point out that j/({ = 0,1) can also depend on 7. The following theorem establishes conditions under
which J, converges as € 0.

Theorem 2: If
Cl1. p{ — p, uniformly on Q,as ¢ ¥ 0, i = 0,1

C2. min pj, exists then
pilps = P/, uniformly on X as € ¥ 0, (3.26)

J@o.pY) = JBoP) = T - BR(P,, P, &, 1) (3.27)
where 8 = (1, C)™".

Proof: 1t is elementary to show that C1 and C2 imply (3.26). Define e(e) = sup |pi/po - P\/P,|- Eq.
(3.26) implies e(e) $ 0 as € ¢ 0 and '
p/p, - e€) < pilps < PP, + e(e). (3.28)
Define the following sets
S={&x|pb,>T)
S, = {x |pilpe > T}
S =A{x |p/p, ~ ele) > T}

S, = {x |p/p, - e(e) > T}



Because of Lemma 2 and u(f2,) < oo, we can write

JBs. P = Y Po

Define the following set functions

CEMDIEL R

- T
(1 . .
77(C)=E 7.171'0]
C .

where C ¢ &. Because S, € §, < S , it follows that

1S < 1(S) < 1(S).

Using C1-2 and g (Q,) < oo, it is straightforward to show that

7(S,)

n(S.) + O(e)

1(S) = 1(S) + O()

1(S) = 1(S) + O).
Also with little difficulty, we can show
lir(r)l nS) = n(S)
[

and
lim n(4) = n(S).
40

Now because A (] A = & (the empty set), then

10

(3.29)

(3.30a)

(3.30b)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35a)

(3.35Y)



() = n4) + n(A). (3.36)

However,

1) = Lp [

Po

p, - p‘o] - 0. (3.37)

Thus 7(S,) = 7(4) and lim 7(S.) = 9(S).. Using this result and (3.31)-(3.35), we see that
€40

lim 7%(S) = 1(S)
€40
- 1 p ! - p &
= —7: D(Pl’d)’]) PF(P0’¢’T) (338)
1o 1 rpBénO
T =, C B orm

C. Minimization Solution Properties

The densities, j;, p; are defined by (3.25). Using Lemma 1, for p, = p; and p, = p;

dH,

— > 0. (3.39)
dv

v=0

Using (3.11), (3.17), and (3.39), it follows that (with G = G, (z, 1))

yac |B.rl =y pc |2 1| foraip €w, (3.40)
o 0 a, Do
In similar fashion, since Lemma 1 implies
ﬁ > 0, (3.41)
dv v=0

it follows via Lemma 3 that

(3.42)

11



E[-l-ﬁf-"é]G( DT <E[lp,—p0] G| &, 1. 6
o T Po g, r Po
Using Lemma 3, we can write
1 ~c = p R
E [—— pl _po] G( -—I , T = E [_ pl - p()] + O(E) (3.44)
a, T p"(; S, T
where S, was previously defined. Thus under the conditions of Theorem 2,
I L5 _ pe pi - 5 B a 3.45
lmz = P1 ~ Do G( —sT =T "6RB(P0)P“¢’7)- (' )
€0 ‘g T p"(;
We now upper bound the right side of (3.43). Define
I =Y p, G@ilps. T). (3.46)
nl
We know
P2 p, + 0@
B‘_l
where

B - {x \pupe > T + l}.
: n

and n is a positive integer. Assuming condition C2 of Theorem 2, then j,/p; = p,/p, + O(¢). Define
the set

B;, = {x /b, > T+ L« e(e)}
n

and the set functions

D) = Y p,
D

D) =Y p,
D

12



where D € #. Since B, € B,,

n

1P = 1°B.) + O)

In similar fashion, if we define

IG(M) = E Pl(l - G((ﬁ;/ﬁ(ja D),

nl

we can show

I = 414G + O

where

C,,; = {X Ipl/ﬁo <T- -111 - 6’(6)}.

Furthermore, using (3.47) and (3.49), it follows that

nl

<

nl(Cnts) - T’O(Bn;) + O(E)

~l =

1
T
It is straightforward to show that

lim lim n'(C,) = P,(P,, ¢, T
n+co €40

lim lim 9'(B,,)

n—+o €40

PAP,, ¢, T).
Thus combining (3.51), (3.52) with (3.43) and (3.45), it follows that as € { O,

R,(B,.B,,0,T) = RP,,P,,®.T).
We summarize the preceding results in the following theorem:

Theorem 3: Assume the pair (55, p;) exists such that

13

1 L€ e 1
Y [71)1 -po] Gpilps D = = (1 - ' - 10

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)



P r
12

(o, py) = arg min Y p, F, (3.54)
P Q‘

forall 0 < € < ¢, and some €_,, > 0. Under the conditions of Theorem 2, then (Po, I5l) is a least
favorable T-dependent pair.

We see from this result and Theorem 1 that under fairly general conditions, least favorable 7-
dependent solutions exist (note the conditions given for the classes in Theorem | are not necessary). In
the next sections, we will find conditions and formulations for solutions to the minimization problem

posed by (3.4) when € > 0. The least favorable 7-dependent solution will result in the limit as € ¢ 0.
IV. EXAMPLE: DIVERGENCE CLASS
A. Preliminaries

In this section, by way of example, we present a methodology for finding the least favorable
T-dependent pair associated with P(i = 0, 1) defined as divergence classes. The divergence [19] of two
densities p, ¢ where Q > > P is defined as

Dip,g) =Y pIn %. (4.1a)

Ql

We define the two hypotheses classes as
P = {P, | Dp,,p’) < A}, i =0, (4.10)

where p,;” are the known nominal densities of H, (i = 0, 1), P > > P, and A, are positive real numbers
chosen such that P, [} P, = ¢. Note P(i = 0, 1) are convex classes. Conditions for P, (| P, = & are
given in Appendix C for A, = A,. The divergence class (or simply div-class) is shown not to necessarily
be 2-alternating capacitable in Appendix D.

The restriction of the support € to have a finite number of elements has two significant benefits.
The first is related to the fact that in practice all solutions that are formulated have unknown parameters
that are solved for via constraint equations and the digital computer. Hence the support is almost always
modelled as a finite set in order to solve for the unknown parameters of the 7-dependent least favorable
pair solution. The second benefit of assuming a finite support set is that one may use the powerful
Kuhn-Tucker convexity theorem for finite dimensions [17] that guarantees that if the Lagrange multiplier
equation is solvable then the solution is a global minimum. In addition, if the minimum exists on an open
subset of the convex probability uncertainty classes, P, then the Lagrange multiplier equation is
necessarily solvable.

For this problem, a support, Q , need not be explicitly defined since none of the constraint equations
depend on € . For notational purposes we define an index set, / = {1, 2, ... , K} where K is the number
of elements of @ and K > 3. Also define

p, = {p, ID@P’) < A, pep )i =01, (4.22)
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pi = {p, |D@p.p.") = A, pep*}, i =01, (4.2b)

P =Py, X P, P = ps X pi, where pX is the space of measures probability measures on a set of K

elements. We assume that p;(i = 0,1) has an infinite number of elements which will be true if K = 3.

K
We observe that p(i = 0,1) is a closed subset of hypercube X [0,1] defined on RX. Hence,
k=1

because, p (i = 0,1) is closed and bounded then, p, and p are compact. Thus Theorem 1 guarantees that
a minimum to (3.4) exists. Define p; = int (p*) (int ~ interior of). In the following, we assume for the

least favorable T-dependent solution that By, p,) € pi.. Thus since p; is an open subset of

p*, the Lagrange multiplier equations are necessarily solvable. In addition, under the assumption

(B¢, pr) existing on p*, then (G, pi) € p; forall 0 < € < €y and some €, > 0. Thus the

Lagrange multiplier equations are necessarily solvable for (Bs, p1), 0 < € < €, , for some €, > 0.

In order to show that (5, j,) is a least favorable T-dependent pair, we must show that the conditions
C1 and C2 of Theorem 2 are met. After (5, p,) is found via the methodology to be presented, one can

check and see if (5, p,) € pi and verify condition C2. Finally, we note with respect to condition C1
that for a finite discrete support space of x, pointwise convergence on {1}, implies uniform convergence
on € .

X

B. Derivation

For notational purposes, we write F(z, T) = F(z) and G(z, T) = G.(z). Consider the minimization
of J(p,, p,) defined by (3.23) withp, € p; (i = 0, 1) defined by (4.2a). Besides the divergence inequality
constraints expressed by (4.2a), the densities must also satisfy the total mass and semi-positivity
constraints. Note, all the constraint functions are convex. In constructing the Lagrangian for this
minimization problem, we will at first ignore these last constraints and show that the solution obtained
without these constraints satisfies the semi-positivity constraints and by proper normalization can be made
to satisfy the total mass constraints.

The Lagrangian for this minimization problem on a finite support is given by

L=Eﬁ(§F; pTl( +s521351n_p_0:+5f2ﬁf1n£17 4.3)
! pO U po I pl

where each p¢ , p . po » pi is indexed with respect to the elements of / and s{(i = 0, 1) are Lagrange
multipliers. We have superscripted these unknowns to indicate that they are functions of €. We will do

this with other unknowns as well. We sum over these indexed elements and denote this by Z . The
I

Kuhn-Tucker convexity theorem [17] guarantees a global minimum on convex p if the following equations
are solvable on p:
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.?é=G( (p_,‘ +s(§+s(§lnp_(:=0 (4.42)
Po \150) Po
LR B im0 (4.4b)
ap LPoJ P

D, p’) =4 ,G=01) 4.5)

where o > sg, s; = 0. If the minimum of J is an interior point of p then (4.4)-(4.5) are necessary and

sufficient conditions. In order to obtain a solution we assume lim s{ = s, 20, (i =0, 1) and check
40

this condition afterward. We also assume

C3. All of the parameters of the constraint equations which are functions of € have limits as ¢ ¢ 0.

Later in our development, we will show conditions under which C3 holds for this particular problem.

Set A€ = p,/p; and A* = p,"/p, , where A“ and A* represent the solution pair and nominal’s likelihood
ratios, respectively. Using (4.4a) and (4.4b), we can show

Loy + LE@A) +1n A = A" (4.6)
So 5y
If A is known then
pi =p’ exp - [1 = F Ay, 4.7)
st

4.8)

-~ € - 1 €
Po = Po €Xp — [1 ——(G((A)
So

We observe that j{ = 0, (i = 0,1), so that the semi-positivity constraint is met. In order to satisfy the
total mass constraints, set

3

“-dﬁewl—lﬁﬂﬂ. 4.9)

AS
I

Po = CaPo €Xp [~ — G(AY ], (4.10)
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where ¢f, (i = 0, 1), are positive numbers chosen to satisfy the total mass constraints. Under C3, let
¢ >c (i=01)ase i 0.

Incorporating these constants, (4.6) becomes

Llewy+ LE@M +ma-ma +m 2, @.11)
So s I

Via Lemma 3, we write
Fi(A9 - lT G(A) + O() .12)
and under condition C3 rewrite (4.11) as

#G(A) +In A+ 0E) = In A* +In L (4.13)

o

where o = ((s; 7)™ + (sg)"). Let & > xase ¢ 0.

We now solve for (§,, p,) for the three distinct cases: A° € Q, @, @, where @, @, Q, are
defined by (3.20).

Case 1: A* €

For this case G(A) = 0 and (4.13) becomes

C(
In A+ O() =In A* + In .l (4.14)
Co

As € ¥ 0, then A° > (c,/c) A" and (4.9)-(4.10) become

p,=c¢ p’ (4.15)

B, = ¢, po (4.16)

for p,/p, < T or equivalently ¢, p,"/(c, ps’) < T.
Case 2: A ¢ ©,

For A° € Q,, G(A9) = 1 and (4.13) becomes

17



( 4.17)

&)

o +1In A+ O@) =In A" +ln_‘.
Co

Ase V 0, A* — e? (c/c)) A* and (4.9)-(4.10) becomes

1
- > 4.18
P, =¢ce T P ( )
z (4.19)
p~o - coe K Po .
for p/p, = T or equivalently ¢, p,"/(c, py ) = Te®
Case 3: A* € (]
For this case (4.13) becomes
L A-T) +InA +0@€) =1In A" +1In . (4.20)
€ ¢
Set A° = AA + T where AA = 0. Rewrite (4.20) as
In [1 +_AA] s %A -m A +lnﬁ + O(e). 4.21)
T € c:
Now
(4.22)

{1+ 28] - 24 oy,
T T

(4.23)

Co

L l:ln A" o 8y o + oy .

Because G(A‘) = AA/e, it follows from (4.23) that
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* (5
Lo imAem 2 e0@ + o). (4.24)
C,

+ 0

G(A) =

€
T

As € ¥ 0, because AA < € then O(AA?) — 0 and

c, T

0

G(r9 > é In l.f'_ A*] . (4.25)

Using (4.12) and (4.25) in (4.9) and (4.10), respectively, it can be shown that

b, = ¢t o T pt e (4.26)

By = e T p pg Y (4.27)

where N = (s,@)" and T < ¢, pl(c, po) < Te® Let X = (sge)™! and A€ - X\ as € + O under
condition C3.

Hence, we see that (5, p;) = (B,, P,) pointwise (or in this case, uniformly on the finite space, (1)
as € ¢ 0 under the conditions that 1) a solution exists for the unknown parameters of the densities,

(B, P,), which are found via the constraint equations, 2) (f,, p,) € int (p*) where p* is defined by
(4.2b), and 3) condition C3 holds.

C. Conditions on the Solution

Now that we have the solution form for j, and p,, we can give readily checked conditions under
which condition C3 can be verified.

Lemma 4: C3 is true (i.e. all the parameters of the constraint equations have limits as € ¢ 0) if

C4. a) cp,' Hepo ) # T or Te® for all x € Q, and b) the Jacobian of the constraint equations is
non-zero.

Proof: Condition C4 exemplifies the conditions associated with the Inverse Function Theorem [20]: the
constraint equations must be continuously differentiable and the Jacobian of the constraint equations must

be non-zero in order that the constraint equations are invertible in the neighborhood of ¢, ¢,, @, and
. It C4a is true, it is straightforward to show that the constraint equations are continuously differentiable.
Set y = (¢, ¢, of, N) and y, = (¢, ¢;, &, N) and let z; = fO), ( = 1, 2, 3, 4) denote the four
constraint equations with fi(yo) = 0. Using the previous development of the derivation of p, and p, it
can be shown that
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¢ pi o+ 0®) s Pl pe) < T+ O)
~€ S A E=Neppoae,, =N o (1-)) . € . € » o (428)
Pi=] ¢ T 7p "po +06€) ; T+0@E <c,p'lcgpy) < Te™ + O(¢)

cie M+ O(e) v Pl po) = Te” + O(e)

¢ P + O(€) C el pi et pe) < T + O)

4.29

B =) QT P 0 i T+ 0@ < clpric pe) < Tev + o) P

coe™py + O(e) v G pilcgpe) = Te” + O)

where the order terms added to each T'and Te®, respectively are identical. Examining (4.28) and (4.29),

it is found that expressions for j; (i = 1, 2) at the boundaries of the regions of applicability are within
O(¢). Thus (4.28) and (4.29) can be rewritten such that the order terms do not appear in the regions of

applicability but are incorporated as order terms in the expressions for p; (i = 0, 1).

If these solutions are substituted into the constraint equations, it is found that f(y) = Ofe) (i = I,
2, 3, 4) where we have subscripted each ordered term to indicate its distinctness. We point out that each
constraint equation has three summations, each taken over one of the three regions defined by (4.28) or
(4.29). Condition C4a guarantees that a term appearing in one of the summations will not jump to another
summation for arbitrarily small perturbations about y,. This will also be true for the first and second
derivitives of f(i = 1, 2, 3, 4). Under C4a, it can be shown that each term of each summation of f =
1,2, 3, 4) is continuously differentiable and hence f; is continuously differentiable. Hence under C4 and

the Inverse Function Theorem, the solution for (c,, c|, of, \) exists in the neighborhood ofc,, ¢,, o, A

for arbitrarily small € and lim (¢, ¢{, &, N\) = (¢, ¢, &, \).O
€40

We point out that it is highly likely that C4 is true.

The condition that oo > s, 5, = 0 is equivalent to the condition &« > 0 and 0 < A\ < 1. This can

be shown via the equations: o = (s'T)"' + so" and N\ = (s,)". Because p,” > 0 and Q, is compact, it
follows that condition C2 of Theorem 2 holds. Under condition C4 and the preceding development we
see that condition C1 of Theorem 2 holds. Thus we can state:

Theorem 4: The least favorable T-dependent pair for the divergence class discrimination hypothesis testing
problem is given by the following densities under the conditions 1) that a solution exists for the unknown
parameters of the densities which are found via the constraint equations (and the total mass constraints),

2) (B, P)) € int (p°*) where p* is defined by (4.2b) 3) C4 holds and 4) a > 0,0 < A\ < 1:
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¢ P

A I-Aerqon. * N, % (1=
€1 G T'p Po*( )

—(-Nay *
| Cle( p,

.
Co Do

A 1-Aeeor. ¥ A x(1-N)
¢i¢o T7°pr Po

| ceps

; Cl pl‘/(copo*) < T
i T < ¢ pilcy,py) < Te*

;¢ P, po) = Te®

€ pl‘/(co Po‘) <T
i T < ¢, pi'llcy,po) < Te*

;¢ ey po) = Te®

where ¢, ¢;, A, a are the unknown parameters to be determined from the four constraint equations.

The likelihood ratio p,/p, is given by

C] pl* /(Co Po‘)

T

e, p\" (¢, po)

The decision rule is given by

D. Calculation of P, Pr

; e pillegpe) <T

. . (4.30)
; T < ¢ pil(cygpy) < Te®
;¢ pilcype) = Tec.
pilpe = ¢Telc, “31)

pilpe > ¢ Te%c,.

Let P,'(T) and P, (T) be the probabilities of detection and false alarm for P ~ H, and

Py ~ H,, respectively of the nominal decision rule with threshold, T. Using (4.31)
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PP, ¢, T) = Prob, e _>T

- E(c, e

o Po

) C] e-(l—)\)a pl. dl“
>T

C ¢ e ps [ QT (4.32)
1 Cl
Similarly, it can be shown
L. Te®
PF(P0,¢,D=C08MPF- [Coe]. (433)
Cl

Thus for any (P, P) € P, using (3.53), (4.30), and (4.31)

- c,Te”
R(P,, ¢, ) < 1, Ccpe™ Py [ 0 ]
c

c,Te”
+ 7rlC'l

1 -c e py

G

] . (4.34)

Hence knowing T, c,, ¢,, N\, Py (), and P; (%) allows us to find the upper-bound on Bayes risk over the
uncertainty classes of the two hypotheses.

V. EXAMPLE: DIVERGENCE/LINEAR CLASS

The results of the previous section can be readily extended to a class we call the Divergence/Linear
class (or simply D/L class). In general, the two hypothesis classes are defined as

P ={P | D@, p’) < A; JX h,XpX)dp =c_;m=12,..M};i=0,1, (5.1

where &, are known functions of the elements of x and the c,, are specified. For example, if A,,(x) is a
multidimensional monomial of the elements of x then c,, corresponds to a moment of these elements. We
again assume P, (] P, = ¢. In addition, we assume that the constraints indicated by (5.1) are regular
[17] on €1, . Because the constraints are convex functions of p, (i = 0, 1) it is straightforward to show that

P (i = 0, 1) are convex sets. It is shown in Appendix D that the D/L class is not necessarily 2-alternating
capacitable.
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As in the preceding sections, we restrict €, to have a finite number of elements. However in this
case, due to the moment constraints, a support must be specified. Set @, = {x,, X,, ..., X,} where there
are K elements in the support and x, (k = 1, 2, ..., K) is an N-length vector and K = M +3. Define

p, ={p, | D@, p’) < 8; Y h,p=c,sm=12,... . M;p, €F}i=01 (52a)
I

p; ={p, | D@, p’) = A; Z h, p, = Cpy m = 1,2,...,M; p. € P}, i =0,1. (5.2b)

1

We assume p;* contains an infinite number of elements which will be true if K = M + 3. Again (as in
the previous section), p and p* are compact and Theorem 1 guarantees that the minimum to (3.4) on p
or p* exists. As before we assume the least favorable T-dependent densities is on the interior of p*tor

@, p,) € int (p°).

The Lagrangian for the minimization problem posed by (3.3) and the class given by (5.2a) (or 5.2b)
is

-~ € ~ €

+s§2ﬁélnp_‘i+sf2ﬁfln£lj

L=Eﬁ5F[_’i_1

! Po ! Do ! P
(5.3)
M
+ E E (>\0mh0m pé + )\1mh1m ﬁ:)
1 m=1
where s; \,, are the Lagrange multipliers (( = 0, 1; m = 1, 2, ... , M) and each B, e,

Po, P, hy,, h,, are indexed with respect to the elements of /.
Using the methodology of the previous section it is straightforward to show:

Theorem 5: The least favorable T-dependent pair for the divergence/linear class discrimination problem
is given by the following densities under the conditions that 1) a solution exists for the unknown
parameters of the densities which are found via the constraint equations ((4.5), total mass constraints, and
moment constraints), 2) (f,, p) € int (p*) where p* is defined by (5.2b), 3) CS holds (given below)
and4)a > 0,0 < A< I:

Define V (which is indexed by /) as

¢, pi M
—_— l — —
V - . exp E : (almhlm aOthln)
CO Do m=1

‘and the sets
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Q, = k|vV < T}
- k|T < V < Tev)
= (k|V = Tev

Q, = {k|V > Te}.

Condition C5 (which is an extension of Lemma 4) is
Cs. a) V= TorTe" for all x € Q and

b) the Jacobian of the constraint equations is non-zero.

The densities are given by

M
Clpl. exp - z; alm hlm k € QV
p = c
! e T p Pexp | - Y [0 - Naghy, + N, b, k€ Q,
m=1 !
M
Cle _(l—k)apl‘ exp _ E almhlm k e va
m=|
)
M
CoPo exp | - ) ag, hy, k€ Q,
m=1 0
A M
Po coco T2, pe “Mexp | - E (1 - Nayh,, + \a, h,) ke q,
m=1 '
M
ce*py exp | - Y ayh,, ke,
m=1
where c;,, \, o, a,,, i =0, I; m = 1,2, ..., M) are unknown parameters to be determined.
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The likelihood ratio of p,/p, is given by

1% ; ke qQ,
A=Y T ; k€EQ ©-4)

eV k€ Q,

The decision rule is given by

3 0 ; k€EQ (5.5)
1 s ke,

where ¢ denotes the complement set. We note that Theorem 4 is actually a special case of Theorem 5
because the total mass constraints can be written as linear constraints with &, = 1, ({ = 0, 1).

VI. SUMMARY

We have presented a methodology for finding robust detectors for composite binary hypotheses
defined for uncertainty classes which are not necessarily 2-alternating capacitable. A robust detector is
defined as a detection structure whose performance measures are sharply lower and/or upperbounded for
given input uncertainty classes. Past robust detection schemes have been threshold independent. The
robust test reduced to a test between two simple hypotheses whereby the underlying probability measures
were fixed representatives of the specified uncertainty classes and were independent of the test’s
threshold. In this paper, we presented conditions and formulations for detection structures which can be
threshold dependent, and which sharply upper-bound the Bayes risk for the chosen detector threshold.
The support set was assumed to have a finite number of elements. The robust detector structure resulted
from solving an associated limiting minimization problem. It was shown that the robust test again reduces
to a test between two simple hypotheses whereby the underlying probability measures were fixed
representatives of the specified uncertainty classes. However. these probability measures can be a function
of the detector’s threshold. Results on the existence of these solutions were presented and solutions for
the divergence and divergence/linear uncertainty classes were formulated.
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Appendix A
PROOF OF LEMMA 2

The regions ©,, Q,, and ©, are defined by (3.20). If z,,,, < T + ¢, the following arguments are easily
modified to obtain the proof. Thus we assume Z,,, = T + €. The functions. F(z, T) and Fyz, T) are
defined by (3.21) and (3.22), respectively. Define

D(z, T) = F(z, T) - Fz, T) . (A1)

To demonstrate that F(z, T) = Fy(z, T) uniformly on [0, z,] as € 4 0, we show that sup | D(z, T) |

—>0ase ¢ Oineachof theregions: 0 < z < Tand T < 7 € 7 (]+] denotes absolute value).

A.Forz < T, D(z, T) = 0 and it trivially follows that sup | Dz, )| = 0.

B.Forz > T,setz =T + A and choose ¢ < A. Forz € [T + €, Zpadd

DG D - l:ln[l . %] ; ET] | (A2)

Since Dz, T) is linear with a negative slope and zero intercept, the maximum occurs at Zp,,. It is
straightforward to show | D(Z,., T | = O(€). Hence sup | Dz, T) | =0ase { Oforz>T.
z
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Appendix B
PROOF OF LEMMA 3

The regions Q,, Q;, Q, and the function G(z, T) are defined in Eq. (3.20). Now

F(’ - JOZ G((i; T) dB + Gz(zzv T) ' (B1)
Define
H@ T) = F/@ T) - 2 G T) . (B2)

To demonstrate that H(z, T) converges uniformly to 0 for z = 0 we show that sup | H(z, T) | = 0 as

e V Oineachregionz <7,z =T, z>T.

A.Forz < T, H(z, T) = 0 and it trivially follows that sup | H(z, T) | = O in this region.

B. For z € Q, we can show

H T) - % n Z - .el_T @-T). (B3)

b4
T
Thus H (T, T) = 0.

C.Forz > T,wesetz =T+ A and choose ¢ < A. Thus z € Q, and it can be shown

F'a.T) = 1mI*€. (B4)
€ T
Now H(z, T) is independent of z and
1 1 T + ¢ 1
F'z,T) - . G, T) = 2 - = = 0@ . (B5)
f(z)T((Z)EnT T (€)

Thus | H(z, T) | is uniformly convergent to O for z > T.
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Appendix C
CONDITION FOR NON-OVERLAPPING DIVERGENCE CLASSES

Let A, = A, = A. We wish to find the minimum A such that there exists a pdf p, satisfying

Yo 2 <a,i=01. (C1)

9 p;

It is straightforward to show that this is equivalent to finding

Amin=n;in;pln_%. i=0,1 (C2)
subject to the constraint
Yo 2 =Y pum £ . (C3)
0, P Q, P
It can be shown that
1-s s
p - prp

1
P 1* N po* ’ (C4)

2

where s is determined from the constraint equation, Eq. (C3). Substituting and simplifying implies s is
the solution of

1-5 s P*
Ypr U pf In =0 (C5)
Q, po
Set
P
) =¥ pr' 7 pF 2L (C6)
Q po

We note f(s) is continuous and monotonically decreasing, on the internal s € {0, 1]. In addition, {0) > 0
and f(1) < 0. Thus a solution exists and

Amin = —11'1 Z pl* - pO* S' (C7)

Qz
Hence for A < A,,, the divergence uncertainty classes do not overlap.
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Appendix D
THE DIVERGENCE OR DIVERGENCE/LINEAR CLASSES
NEED NOT BE 2-ALTERNATING CAPACITABLE

We need only consider the D/L classes since the div-class is embedded in the D/L class. We can
construct a D/L class that has only one member in it. Because this class is trivially 2-alternating
capacitable, we cannot be definitive and say no D/L class is 2-alternating capacitable.

Assume that P, is defined by Eq. (5.1) and that this class is 2-alternating capacitable. Specifically,
let P, be div-class with finite support such that K = 2. Let P, have only one member, P,, (and thus is
2-alternating capacitable) such that P, & P,. It is straightforward to modify Huber and Strassen’s [3]
Theorem 6.1 to show that if F is any twice continuously differentiable function on (0, o) and P, > > P,
then the least favorable pair (in the sense of Huber and Strassen), each of which is 2-alternating
capacitable, minimizes J(p,, p,) which defined by (3.3). The resultant pair is functionally independent of
the choice of F. Consider the solutions for p, under F = F; = —~Inzand F = F, = zInz. Both F, and
F, are convex and twice continuously differentiable on (0, o). For F,, the solution exists and is given
by Blahut [21]. Under F,, it can be shown that a solution exists for some ¢,. However, the solutions under
F, and F, are not identical. Hence P, is not capacitable.
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